| Print ISSN: 2589-7837 | Online ISSN: 2581-3935 | |

International Journal of Medical Science and Diagnosis Research (IJMSDR)

Available Online at www.ijmsdr.com

NLM (National Library of Medicine ID: 101738824)

Volume 4, Issue 9; September: 2020; Page No. 26-29

Original Research Article

CORRELATION BETWEEN OXIDATIVE STRESS AND ANTIOXIDANT IN DIABETIC NEPHROPATHY

¹Bhagwan Singh Meena, ²B.K. Agarwal, ³Arun Mishra, ⁴ Mahesh Kumar

^{1,2,3,4} Department of Biochemistry, Index medical college, Indore. India

Conflicts of Interest: Nil

Corresponding Author: Mahesh Kumar

DOI: https://doi.org/10.32553/ijmsdr.v4i9.666

Abstract:

Background: Diabetic Nephropathy is consider as one of the major micro-vascular problems of diabetes mellitus and has become the most general single factor of end stage of kidney disease. It is defined traditionally by kidney morphological and modification like: glomerular hyper filtration, glomerular and kidney hypertrophy, increased urinary albumin excretion (> 300 mg/24 hours), increased GBM (Glomerular Basement Membrane) thickness and mesangial expansion and also accumulation of extracellular proteins comprising laminin, collagens and fibronectin worldwide. Oxidative stress (OS) has been characterized as the imbalance between reactive oxygen species (ROS) yielding and the possessive antioxidant

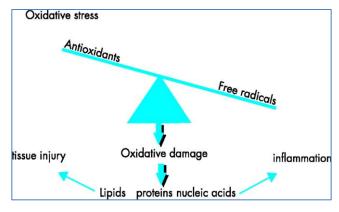
Objective of the study: Correlation between oxidative stress and antioxidant in diabetic nephropathy.

Materials and methods: The investigation was conducted on 100 DN subjects of both sex and aged 20 or more and 100 age and sex matched healthy control subjects. MDA, SOD and Catalase of each subject was measured.

Results: the present investigation shows that the MDA was elevated significantly and SOD and Catalase level was found to be significantly low in DN individuals as compared to controls. Conclusion: This study concluded that the MDA could be better marker for early recognition of DN.

Keywords: Diabetic nephropathy (DN), MDA, SOD, Catalase, Kidney disease

Introduction:


Diabetic Nephropathy (DN): DN is treated as one of the chief micro-vascular complications of diabetes mellitus and has become the most commonly single factor of end-stage of kidney disease. It is delineated commonly by renal morphological and function activity alterations like; glomerular and kidney hypertrophy, glomerular hyperfiltration, elevated glomerular basement membrane (GBM) thickness, elevated urinary albumin excretion (> 300 mg/ 24 hours), and mesangial expansion and also aggregation of extracellular proteins comprising laminin, collagens and fibronectin^{1,2,3}.

In 2015 the pervasiveness of diabetes was 8.8%, ages from 20 to 70 years affecting a people of about 440 million populations by the year 2035⁴. The main clinical features of diabetes are chronic tissue damage. For short-term elevation in hyperglycemia doesn't show in severe clinical problems. The duration and severity of hyperglycemia is the major causative factor in initiating organ damage⁵.

About 2/3 of the patients with diabetic nephropathy develop ESRD or renal failure requiring either dialysis or renal transplantation. In the US the DN is the most general element of ESRD or chronic kidney failure and reports that for > 1/3 of subjects entered in long-term dialysis curicculums⁶. Patients with nephropathy frequently develop other complications, in particularly cardiovascular disease including hypertention and stroke, resulting in

increased risk of early mortality^{7,8}. In subjectswho have type 1 diabetes; forty years after onset of the disease, the mortality rate is 90% for those patients with nephropathy but only 30% for those patients without renal disease⁸. kidney problems of DM are glomerulosclerosis and vascular disease are the most essential factors of renal failure in the diabetic subjects.

Oxidative stress (OS): OS has been characterized as the imbalance between reactive oxygen species (ROS) yielding and the possessive antioxidant defense system. The oxidative stress developed by hyperglycemia increases ROS production, which causes the activation of different redox-sensitive cell signaling molecules and the production of cytotoxic materials. This is followed by cellular dysfunction and damage and ultimately results in diabetic micro-.and macro-vascular complications 9,10,11.

OS delineated by an elevation in production of products derived from lipid peroxidation and a decline in antioxidant capacity^{12,13,14}. The most routine used marker of lipid oxidation is Malonaldehyde (MDA), which is developed naturally without any enzymatic action¹⁵. MDA is a kind of end product generated by lipid peroxidation and has been considered as a biomarker of increased oxidative stress during CKD¹⁶. Increased production of MDA level in the diabetic nephropathy, which is a suggestive feature of oxidative stress in long standing type 2 diabetes^{17,18,19}.

Antioxidants are intensifies that repress oxidation. Oxidation is a concoction response that can create free radicals, subsequently prompting chain responses that may harm the cells of creatures. Thus, it has been several stages of biological defenses developed, which can be classified as prevention, interception and repair²⁰.

The present investigation was undertaken to find out level of MDA and SOD & CAT in DN & compared with a group of healthy subjects.

Materials and methods:

The investigation was conducted on 100 DN subjects of both sex and aged 20 or more and 100 age and sex matched healthy control subjects. A 12 hours fasting blood sample was collected from each subject in plain, EDTA & fluoride vial. After collection sample was centrifuged and serum store at 4° c.

Plasma Malondialdehyde (MDA) was estimated by Jean CD $(1983)^{21}$ and Serum super oxide dismutase (SOD) was estimated by the method of Marklund & Marklund $(1974)^{22}$. Serum catalase (CAT) was estimated by the method of Aebi $(1984)^{23}$. Correlation analysis was done by using SPSS version 20. The mean (\pm SD) of test group (DN subjects) was compared with that of control group by Student's unpaired t test. A p value of less than 0.05 was considered as significant.

Results:

Table 1: Shows Statistical analyzes projected that the MDA of diabetic nephropathy patients found to be significantly elevated. This was observed that the average (Mean \pm SD) MDA concentration that was found in the control group was 1.15 \pm 0.27 and in the test group was 4.78 \pm 0.68. The MDA level was found significantly higher in comparison to that in the (healthy subjects) control group, with a p value of < 0.001.

Table 2: Shows statistical analyzes projected that the SOD and CAT of diabetic nephropathy patients found to be significantly lower. This was observed that the average (mean \pm SD) SOD and CAT concentration that was found in the control group was 6.16 \pm 0.90 and 7.29 \pm 0.77 and in

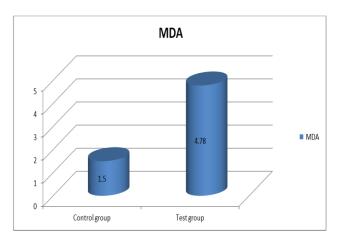

the test group, it was 2.72 ± 0.42 and 3.11 ± 0.71 . The SOD and CAT level was found to be significantly low in comparison to that in the healthy subjects (control group), with a p value of < 0.001.

Table 1: Comparison of MDA (Oxidative stress) of controls and test groups

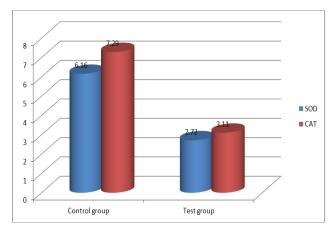

PARAMETER	GROUP	MEAN ± SD	P-VALUE
	Control group	1.15 ± 0.27	
MDA	Test group	4.78 ± 0.68	<0.001

Table 2: Comparison of SOD and CAT of controls and test groups

PARAMETER	GROUP	MEAN ± SD	P-VALUE
	Control group	6.16 ± 0.90	
SOD	Test group	2.72 ± 0.42	<0.001
	Control group	7.29 ± 0.77	
CAT	Test group	3.11 ± 0.71	<0.001

Figure 1: Comparison of MDA of controls and test groups, in the form of bar diagram.

Figure 2: Comparison of SOD & CAT of controls and test groups, in the form of bar diagram.

Discussion and Conclusion

In the present study, the mean MDA concentration was found to be significantly higher and SOD and CAT level was found to be significantly low in the DN as compare to control group.

These findings were concordant with the results of the studies, which were previously done by Varma et al., (2014)²⁴ found increase level of MDA was observed in Diabetic nephropathy. They also found significantly decrease SOD, Catalase level.

Kafle et al., $(2012)^{25}$ concluded that the inflammatory markers and oxidative stress are raised with decline antioxidant defense levels in patients who have diabetic nephropathy because of hyperglycemia induced oxidative stress.

Our results are in conformity with these two previous reports. As the subjects included in the present study were otherwise healthy, the increased oxidative stress & abnormal antioxidant level are common in renal disease and diabetic patients. The role of oxidation mediated tissue damage in generation of diabetic nephropathy in humans is evidence by the higher level of MDA with lower blood level of CAT and SOD.

Acknowledgment:

The authors are thankful to the faculty and staff of Department of Biochemistry, Index Medical College and Hospital.

References:

- Ziyadehl FN. Mediators of diabetic renal disease: the case for TGF-ß as the major mediator. JASN 2004; 15(1): 55-7.
- 2. Bhagwan singh meena, rajesh solanki, mahesh kumar, r.c.gupta, estimation of urinary protein creatinine index in obese and nonobese individuals, international journal of scientific research: volume-6 | issue-11 | november-2017
- Ceriello A, Testa R and Genovese S. Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis. 2016;26(4):285-92.
- International Diabetes Federation (IDF) Diabetes Atlas. International Diabetes Federation. 2015; 7ed, Brussels, Belgium.
- Meena BS, Agarwal BK, Kumar M and Chandel MS. Role of cystatin c in diabetic nephropathy. IJMSDR 2020; 4(7):89-90.
- **6.** Collins AJ, Foley RN, Chavers B, et al. US Renal Data System 2011 Annual Data Report. Am J Kidney Dis 2012; 59(1):1.

- Deckert T, Poulsen JE and Larsen M. Prognosis of diabetics with diabetes onset before the age of thirtyone. I. Survival, causes of death, and complications. Diabetologia 1978; 14(6):363-70.
- **8.** Grenfell A and Watkins PJ. Clinical diabetic nephropathy: natural history and complications. Clin Endocrinol Metab 1986; 15(4):783-805.
- Kachhawa K, Varma M, Kachhawa P, Agrawal D, Shaikh M, Kumar S. Study of dyslipidemia and antioxidant status in chronic kidney disease patients at a hospital in South East Asia. J Health Res Rev 2016;3(1):28-3.
- **10.** Kannan K, Jain S K. Oxidative Stress and apoptosis. Pathophysiology. 2000; 7(3):153-63.
- **11.** Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40(4):405-12.
- **12.** Annuk M, Fellström B, Akerblom O, Zilmer K, Vihalemn T, Zilmer M. Oxidative stress markers in preuremic patients. Clin Nephrol 2001; 56(4):308-14.
- 13. Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C. Oxidative stress in end-stage renal disease. An emerging threat to patient outcome. Nephrol Dial Transplant 2003; 18(7):1272-80.
- **14.** Vaziri ND. Oxidative stress in uremia: Nature, mechanisms, and potential consequences. Semin Nephrol 2004; 24(5):469-73.
- **15.** Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Serum malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin Chem. 1997; 43(7):1209–14.
- 16. Atamer A, Kocyigit Y, Ecder SA, et al. Effect of oxidative stress on antioxidant enzyme activities, homocysteine and lipoproteins in chronic kidney disease. J Nephrol. 2008; 21(6):924–30.
- 17. Cvetkoviae T, Mitiae B, Lazareviae G, Vlahoviae P, Antiae S, Stefanoviae V. Oxidative stress parameters as possible urine markers in patients with diabetic nephropathy. J Diab and Its Complications 2009; 23(5):337-42.
- **18.** Kafle D, singh N, Singh SK, Singh N, Bhargav V, Singh AK. Persistent hyperglycemia generating reactive oxygen species in renal cells, a probable cause of inflammation in type2 diabetic nephropathy subjects. Biomed Res- India 2012; 23(4): 501-4.
- **19.** Sharma K, Mahajan M. Role of oxidative stress in aggravating kidney dysfunction in coronary artery disease patients-A laboratory finding. JMLD 2013; 4(2): 28-33.
- **20.** Sies H. Biochemistry of antioxidant defense. Eur J Biochem. 1993.215(2):213-9.

- **21.** Jean CD, Maryse T, Marie JF. Plasma Malondaildehyde levels during myocardial infarction Clin Chem Acta. 1983; 129:319-22.
- **22.** Marklund S and Marklund G. Eur J Biochem. 1974; 469-74.
- **23.** Hugo Aebi. Methods in enzymolgy. 1984; 105:121-6.
- **24.** Varma M, Kachhawa K, Sahu A, Kachhawa P. Association of Antioxidant Enzymes and MDA level in
- Diabetic Nephropathy Patients in Indore Region of Madhya Pradesh. J PURE APPL MICROBIO. 2014; 8(5):4137-42.
- 25. Kafle D, singh N, Singh SK, Singh N, Bhargav V, Singh AK. Persistent hyperglycemia generating reactive oxygen species in renal cells, a probable cause of inflammation in type2 diabetic nephropathy subjects. Biomed Res- India 2012; 23(4): 501-4.