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Abstract:  
Type 2 Diabetes Mellitus (T2DM) is a major healthcare concern due its complications like heart disease, cerebro-vascular 
accidents, etc. It produces a major strain on the healthcare setting as no complete cure is currently available for the 
disease. This lack of a permanent cure is mainly attributed to the complex pathophysiology of the disease. Multiple factors 
contribute in the pathogenesis of the disease. Many of such factors have been identified in the recent years. These factors 
include β cell dysfunction, inflammatory cytokines, NLRP3 inflammosomes, etc. 
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Introduction 

Among the various metabolic diseases, diabetes is an 
important concern for healthcare professionals all over the 
world. This is mostly attributed to the higher risk of severe 
complications like heart disease, cerebro-vascular 
accidents and renal failure. Type 2 Diabetes Mellitus 
(T2DM) is also the most common metabolic disease. It is 
mainly due to defective insulin secretion. Lifestyle factors 
like age, pregnancy, obesity, etc. have a strong influence 
on the pathogenesis of such defective insulin secretion 
[1,2]. In 2017, the number of diabetic patients between 18 
and 99 years of age was approximately 451 million. And by 
2045, it is expected to reach 693 million. The mortality in 
case of diabetes in the age group of 20 to 99 is about 20 
million [3]. 

Previously, using insulin radioimmunassay, it was found 
out that insulin was secreted in response to nutrient 
ingestion in case of early maturity onset diabetes patients 
[4].  Also, the islet β cells of these patients were found to 
be defective. They failed to mount adequate response 
towards intravenous secretagogues [5]. Insulin insensitivity 
was also found among these patients [6]. This led to 
increased gluconeogenesis in liver along with decrease in 
the uptake of glucose in muscle and adipose tissue [7]. 

Type 1 Diabetes Mellitus is mostly treated by insulin 
therapy throughout the life of the patient [8]. But in case 
of T2DM, no such long lasting treatment is available due to 
the complex pathophysiology of the disease, most of which 
is still unknown to the healthcare professionals. In this 
review, we have tried to include all the new advances in 
understanding this complex pathophysiology. 

Methods 

Here we have systematically reviewed the different articles 
published from 1936 to 2020 for this purpose from 
different databases of PubMed, Cochrane Library, etc. 
Keywords related to the study aim and included in the 

search string were: drowning, diagnostic tests, biomarkers, 
forensic diagnosis. The aim of this article is to highlight 
newer methods that can be used to diagnose the cause of 
death in case of drowning. 

Role of β cells in glucose homeostasis 

The glucose homeostasis is maintained by a feedback loop. 
It regulates the glucose concentration and maintains it 
within a narrow range [9]. This interactive signaling 
between β cells and insulin-sensitive tissues is the 
mainstay of this feedback loop. Glucose, amino acids and 
fatty acids are taken up by the insulin sensitive tissues 
through the mediation of insulin released as a result of β 
cell stimulation. These islet cells are signaled by these 
insulin sensitive tissues about their need for insulin. The 
secretion of insulin from β cells is increased in case of 
insulin resistance in order to maintain normal glucose 
tolerance [10]. 

Impaired glucose tolerance indicates the presence of 
insulin resistance. In case of impaired glucose tolerance, 
the rise of glucose concentration even within the normal 
limit is attributed to decreased β cell function [11]. The 
evolution of natural history of T2DM from impaired 
glucose tolerance is due to progression of the detoriation 
of β cell function [12,13]. The differences in the rates of 
T2DM in different ethnic groups is attributed to the 
heritable nature of β cell function [14,15]. 

Genetic Factors 

PPARG was the first gene identified to be associated with 
T2DM [14]. More than 50 gene loci have been found to be 
linked to T2DM from genome-wide association studies 
[16]. Among these gene loci, most of the loci are 
associated with β cell function. The rest of the loci are 
linked with insulin resistance and obesity [17]. The risk of 
development of T2DM in an offspring is increased by 
certain genetic expressions which are influenced by the in-
utero environment [18]. 



Ritwik Ghosh et al. International Journal of Medical Science and Diagnosis Research (IJMSDR) 
 

11 | P a g e  
 

Environmental Factors 

The development of obesity, β cell dysfunction, insulin 
resistance and glucose intolerance have been attributed to 
increased intake of dietary fats, specially saturated fats 
[19]. The response of β cells to carbohydrate gets reduced 
gradually with the progression of age. This results in the 
decrease of glucose tolerance with ageing [20]. 

Reduction of β cells 

The number of β cells gets reduced in T2DM [21-24]. 
Multiple factors are responsible for this reduction of β 
cells. These factors include glucolipotoxicity [25] and 
deposition of amyloid which cause β cell apoptosis through 
oxidative and endoplasmic-reticulum stress [24]. Since the 
human pancreas is not able to produce β cells after 30 
years of age, this loss is not replaced by new β cells [26]. 

α cell dysfunction 

In the pancreatic islets, blood flows from β cells to the α 
cells [27]. It has been found that high concentrations of 
insulin in the blood flowing to α cells can suppress the 
release of glucagon [28].  

The failure to suppress glucagon release after ingestion of 
food leads to hyperglycemia. This failure is indicated by 
increased concentration of fasting glucagon and is 
attributed to α cell dysfunction [29]. 

Role of intestine 

In the gastro-intestinal tract, Glucagon like peptide 1 (GLP-
1) and glucose dependent insulinotropic polypeptide (GIP) 
act on pancreatic islets. Among them, GLP-1 acts on β cells 
to increase insulin secretion and on α cells to decrease 
glucagon secretion [30]. There is no difference in GLP-1 
concentration between a healthy person and a person 
having T2DM [31]. Thus, the β cell response to GLP-1 is 
decreased in case of T2DM. This decreased response has 
been observed through intravenous administration of GLP-
1 under controlled conditions [32]. 

Another important regulator of glucose metabolism in the 
gastro-intestinal tract is bile acids. They initiate the release 
of fibroblast growth factor (FGF) 19 by activating farnesoid 
X receptor [33]. FGF 19 has insulin-like effects. GLP-1 
secretion is also mediated by bile acids through the 
activation of G-protein-coupled bile-acid receptor 1 located 
on intestinal L cells [34]. 

The intestinal microbiome is another important factor in 
the evolution of T2DM [35]. But which bacterial species are 
associated with T2DM is not clear [36]. Proof of concept 
study has shown that infusion of intestinal microbiota from 
lean individuals can improve insulin sensitivity in patients 
with T2DM [37]. 

 

Role of nervous system 

Glucose metabolism is controlled by parasympathetic and 
sympathetic nervous systems. Direct control is through 
neuronal input and indirect control is through circulation. 
Ultimately, the glucose metabolism is controlled through 
regulation of insulin, glucagon secretion and 
gluconeogenesis by the nervous system [38,39].  

The vagus nerve has been identified to have regulatory 
effect on the pancreatic islets as experimental severing of 
this nerve has resulted in decreased insulin secretion [40]. 
In the cranium, the hypothalamus has been identified as an 
important regulator of pancreatic islets. This has been 
shown by the fact that experimental ablation of 
hypothalamus in rats lead to β cell dysregulation and  
hyperinsulinaemia [41].  

Decreased quality of sleep and changes in diurnal patterns 
are responsible for alteration of metabolic processes. 
Hence, the clock genes which maintain circadian rhythm 
are suspected to play a role in the pathogenesis of T2DM 
[42,43].  

Islet inflammation 

Several systemic inflammatory markers like C-reactive 
protein and Interleukin 6 are associated with β cell 
function and insulin sensitivity [44,45]. Intraislet immune 
response is responsible for β cell dysfunction [46].  

Interleukin 1β and interleukin 1 receptor antagonist 
concentrations have been found to be increased in case of 
T2DM. They play a role in inflammation of islet and β cell 
dysfunction [47,48]. 

Role of Macrophage-inhibiting cytokine-1 (MIC-1) 

MIC-1 regulates body weight by acting on the feeding 
centers in hypothalamus and brainstem [49]. Insulin 
activity increases with increase in MIC-1 expression [50]. 
Hence, MIC-1 can be considered as an anti-inflammatory 
cytokine and may help in the regression of T2DM. 

Role of NLRP3 inflammosome 

The NLRP3 inflammosome interacts with the TXNIP and 
thereby regulates the innate immune system. It is 
activated by glucose, saturated fatty acids and uric acid. It 
promotes the production of IL-1β and cytokines which lead 
to inflammation of pancreatic islets [51,52]. 

Role of macrophages 

T2DM is characterized by macrophage infiltration of the 
pancreatic islets. The degree of infiltration is usually 
proportional to the degree of β cell dysfunction [53-58].  
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Conclusion 

T2DM is one of the most prevalent diseases in today’s 
world. It is a major healthcare concern due to its severe 
complications like stroke, cardiovascular diseases, etc. Due 
to its complex pathophysiology, there is no complete cure 
for this disease. This complex pathophysiology is mainly 
attributed to the disease being multifactorial. Various 
studies have shown that the contributory factors to the 
pathogenesis of T2DM are β cell dysfunction, intestinal and 
brain signals, NLRP3 inflammosomes, genetic and 
environmental factors, etc. Further studies need to be 
conducted to ascertain a more clear picture of the roles of 
various contributory factors in order to properly 
understand the pathogenesis of T2DM. 
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