| | Print ISSN: 2589-7837 | | Online ISSN: 2581-3935 | |

International Journal of Medical Science and Diagnosis Research (IJMSDR)

Available Online at www.ijmsdr.com

NLM (National Library of Medicine ID: 101738824) Volume 4, Issue 7; July: 2020; Page No. 10-13

Original Research Article

ADVANCES IN THE UNDERSTANDING OF PATHOPHYSIOLOGY OF TYPE 2 DIABETES MELLITUS Ritwik Ghosh¹, Saikat Das²

^{1,2}MBBS Student, Calcutta National Medical College

Conflicts of Interest: Nil

Corresponding author: Ritwik Ghosh

Abstract:

Type 2 Diabetes Mellitus (T2DM) is a major healthcare concern due its complications like heart disease, cerebro-vascular accidents, etc. It produces a major strain on the healthcare setting as no complete cure is currently available for the disease. This lack of a permanent cure is mainly attributed to the complex pathophysiology of the disease. Multiple factors contribute in the pathogenesis of the disease. Many of such factors have been identified in the recent years. These factors include β cell dysfunction, inflammatory cytokines, NLRP3 inflammosomes, etc.

Keywords: Diabetes, pathophysiology, factors

Introduction

Among the various metabolic diseases, diabetes is an important concern for healthcare professionals all over the world. This is mostly attributed to the higher risk of severe complications like heart disease, cerebro-vascular accidents and renal failure. Type 2 Diabetes Mellitus (T2DM) is also the most common metabolic disease. It is mainly due to defective insulin secretion. Lifestyle factors like age, pregnancy, obesity, etc. have a strong influence on the pathogenesis of such defective insulin secretion [1,2]. In 2017, the number of diabetic patients between 18 and 99 years of age was approximately 451 million. And by 2045, it is expected to reach 693 million. The mortality in case of diabetes in the age group of 20 to 99 is about 20 million [3].

Previously, using insulin radioimmunassay, it was found out that insulin was secreted in response to nutrient ingestion in case of early maturity onset diabetes patients [4]. Also, the islet β cells of these patients were found to be defective. They failed to mount adequate response towards intravenous secretagogues [5]. Insulin insensitivity was also found among these patients [6]. This led to increased gluconeogenesis in liver along with decrease in the uptake of glucose in muscle and adipose tissue [7].

Type 1 Diabetes Mellitus is mostly treated by insulin therapy throughout the life of the patient [8]. But in case of T2DM, no such long lasting treatment is available due to the complex pathophysiology of the disease, most of which is still unknown to the healthcare professionals. In this review, we have tried to include all the new advances in understanding this complex pathophysiology.

Methods

Here we have systematically reviewed the different articles published from 1936 to 2020 for this purpose from different databases of PubMed, Cochrane Library, etc. Keywords related to the study aim and included in the

search string were: drowning, diagnostic tests, biomarkers, forensic diagnosis. The aim of this article is to highlight newer methods that can be used to diagnose the cause of death in case of drowning.

Role of β cells in glucose homeostasis

The glucose homeostasis is maintained by a feedback loop. It regulates the glucose concentration and maintains it within a narrow range [9]. This interactive signaling between β cells and insulin-sensitive tissues is the mainstay of this feedback loop. Glucose, amino acids and fatty acids are taken up by the insulin sensitive tissues through the mediation of insulin released as a result of β cell stimulation. These islet cells are signaled by these insulin sensitive tissues about their need for insulin. The secretion of insulin from β cells is increased in case of insulin resistance in order to maintain normal glucose tolerance [10].

Impaired glucose tolerance indicates the presence of insulin resistance. In case of impaired glucose tolerance, the rise of glucose concentration even within the normal limit is attributed to decreased β cell function [11]. The evolution of natural history of T2DM from impaired glucose tolerance is due to progression of the detoriation of β cell function [12,13]. The differences in the rates of T2DM in different ethnic groups is attributed to the heritable nature of β cell function [14,15].

Genetic Factors

PPARG was the first gene identified to be associated with T2DM [14]. More than 50 gene loci have been found to be linked to T2DM from genome-wide association studies [16]. Among these gene loci, most of the loci are associated with β cell function. The rest of the loci are linked with insulin resistance and obesity [17]. The risk of development of T2DM in an offspring is increased by certain genetic expressions which are influenced by the inutero environment [18].

Environmental Factors

The development of obesity, β cell dysfunction, insulin resistance and glucose intolerance have been attributed to increased intake of dietary fats, specially saturated fats [19]. The response of β cells to carbohydrate gets reduced gradually with the progression of age. This results in the decrease of glucose tolerance with ageing [20].

Reduction of B cells

The number of β cells gets reduced in T2DM [21-24]. Multiple factors are responsible for this reduction of β cells. These factors include glucolipotoxicity [25] and deposition of amyloid which cause β cell apoptosis through oxidative and endoplasmic-reticulum stress [24]. Since the human pancreas is not able to produce β cells after 30 years of age, this loss is not replaced by new β cells [26].

α cell dysfunction

In the pancreatic islets, blood flows from β cells to the α cells [27]. It has been found that high concentrations of insulin in the blood flowing to α cells can suppress the release of glucagon [28].

The failure to suppress glucagon release after ingestion of food leads to hyperglycemia. This failure is indicated by increased concentration of fasting glucagon and is attributed to α cell dysfunction [29].

Role of intestine

In the gastro-intestinal tract, Glucagon like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) act on pancreatic islets. Among them, GLP-1 acts on β cells to increase insulin secretion and on α cells to decrease glucagon secretion [30]. There is no difference in GLP-1 concentration between a healthy person and a person having T2DM [31]. Thus, the β cell response to GLP-1 is decreased in case of T2DM. This decreased response has been observed through intravenous administration of GLP-1 under controlled conditions [32].

Another important regulator of glucose metabolism in the gastro-intestinal tract is bile acids. They initiate the release of fibroblast growth factor (FGF) 19 by activating farnesoid X receptor [33]. FGF 19 has insulin-like effects. GLP-1 secretion is also mediated by bile acids through the activation of G-protein-coupled bile-acid receptor 1 located on intestinal L cells [34].

The intestinal microbiome is another important factor in the evolution of T2DM [35]. But which bacterial species are associated with T2DM is not clear [36]. Proof of concept study has shown that infusion of intestinal microbiota from lean individuals can improve insulin sensitivity in patients with T2DM [37].

Role of nervous system

Glucose metabolism is controlled by parasympathetic and sympathetic nervous systems. Direct control is through neuronal input and indirect control is through circulation. Ultimately, the glucose metabolism is controlled through regulation of insulin, glucagon secretion and gluconeogenesis by the nervous system [38,39].

The vagus nerve has been identified to have regulatory effect on the pancreatic islets as experimental severing of this nerve has resulted in decreased insulin secretion [40]. In the cranium, the hypothalamus has been identified as an important regulator of pancreatic islets. This has been shown by the fact that experimental ablation of hypothalamus in rats lead to β cell dysregulation and hyperinsulinaemia [41].

Decreased quality of sleep and changes in diurnal patterns are responsible for alteration of metabolic processes. Hence, the clock genes which maintain circadian rhythm are suspected to play a role in the pathogenesis of T2DM [42,43].

Islet inflammation

Several systemic inflammatory markers like C-reactive protein and Interleukin 6 are associated with β cell function and insulin sensitivity [44,45]. Intraislet immune response is responsible for β cell dysfunction [46].

Interleukin 1β and interleukin 1 receptor antagonist concentrations have been found to be increased in case of T2DM. They play a role in inflammation of islet and β cell dysfunction [47,48].

Role of Macrophage-inhibiting cytokine-1 (MIC-1)

MIC-1 regulates body weight by acting on the feeding centers in hypothalamus and brainstem [49]. Insulin activity increases with increase in MIC-1 expression [50]. Hence, MIC-1 can be considered as an anti-inflammatory cytokine and may help in the regression of T2DM.

Role of NLRP3 inflammosome

The NLRP3 inflammosome interacts with the TXNIP and thereby regulates the innate immune system. It is activated by glucose, saturated fatty acids and uric acid. It promotes the production of IL-1 β and cytokines which lead to inflammation of pancreatic islets [51,52].

Role of macrophages

T2DM is characterized by macrophage infiltration of the pancreatic islets. The degree of infiltration is usually proportional to the degree of β cell dysfunction [53-58].

Conclusion

T2DM is one of the most prevalent diseases in today's world. It is a major healthcare concern due to its severe complications like stroke, cardiovascular diseases, etc. Due to its complex pathophysiology, there is no complete cure for this disease. This complex pathophysiology is mainly attributed to the disease being multifactorial. Various studies have shown that the contributory factors to the pathogenesis of T2DM are β cell dysfunction, intestinal and brain signals, NLRP3 inflammosomes, genetic and environmental factors, etc. Further studies need to be conducted to ascertain a more clear picture of the roles of various contributory factors in order to properly understand the pathogenesis of T2DM.

Keywords

T2DM: Type 2 Diabetes Mellitus

GLP-1: Glucagon like peptide 1

GIP: Glucose dependent insulinotropic polypeptide

MIC-1: Macrophage-inhibiting cytokine-1

NLRP3: Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3

TXNIP: Thioredoxin-interacting protein

References

- Ashcroft, F.M.; Rorsman, P. Diabetes mellitus and the beta cell: The last ten years. Cell 2012, 148, 1160–1171.
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150.
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281.
- **4.** Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. *J Clin Invest* 1960; 39: 1157–75.
- **5.** Perley M, Kipnis DM. Plasma insulin responses to glucose and tolbutamide of normal weight and obese diabetic and nondiabetic subjects. *Diabetes* 1966; 15: 867–74.
- Himsworth HP. Diabetes mellitus: its diff erentiation into insulinsensitive and insulin-insensitive types. *Lancet* 1936; 227: 127–30.
- Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. *Diabetes* 1988; 37: 1595–607.
- Nicolucci, A.; Maione, A.; Franciosi, M.; Amoretti, R.; Busetto, E.; Capani, F.; Bruttomesso, D.; Di Bartolo, P.; Girelli, A.; Leonetti, F.; et al. Quality of life and treatment satisfaction in adults with Type 1 diabetes: A comparison between continuous subcutaneous insulin infusion and multiple daily injections. Diabet. Med. 2008, 25, 213– 220.
- Kahn SE, Prigeon RL, McCulloch DK, et al. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function. *Diabetes* 1993; 42: 1663–72.
- Kahn SE, Cooper ME, Prato SD. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. The Lancet. 2014 Mar 22p; 383(9922): 1068-83.

- Stancakova A, Javorsky M, Kuulasmaa T, Haff ner SM, Kuusisto J, Laakso M. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes 2009; 58: 1212–21.
- **12.** Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. *J Clin Invest* 1999; 104: 787–94.
- **13.** Kahn SE, Lachin JM, Zinman B, et al, and the ADOPT Study Group. Effects of rosiglitazone, glyburide, and metformin on β-cell function and insulin sensitivity in ADOPT. *Diabetes* 2011; 60: 1552–60.
- 14. Elbein SC, Hasstedt SJ, Wegner K, Kahn SE. Heritability of pancreatic beta-cell function among nondiabetic members of Caucasian familial type 2 diabetic kindreds. J Clin Endocrinol Metab 1999; 84: 1398–403.
- 15. Jensen CC, Cnop M, Hull RL, Fujimoto WY, Kahn SE, and the American Diabetes Association GENNID Study Group. Beta-cell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the U.S. *Diabetes* 2002; 51: 2170– 78.
- 16. Morris AP, Voight BF, Teslovich TM, et al, and the Wellcome Trust Case Control Consortium, the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators, the Genetic Investigation of ANthropometric Traits (GIANT) Consortium, the Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium, the South Asian Type 2 Diabetes (SAT2D) Consortium, and the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012; 44: 981–90.
- 17. McCarthy MI. Genomics, type 2 diabetes, and obesity. *N Engl J Med* 2010: 363: 2339–50.
- 18. Guenard F, Deshaies Y, Cianfl one K, Kral JG, Marceau P, Vohl M-C. Diff erential methylation in glucoregulatory genes of off spring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci USA 2013; 110: 11439–44.
- 19. Hu FB, van Dam RM, Liu S. Diet and risk of type II diabetes: the role of types of fat and carbohydrate. Diabetologia 2001; 44: 805–17.
- Chen M, Bergman RN, Porte D Jr. Insulin resistance and β-cell dysfunction in aging: the importance of dietary carbohydrate. J Clin Endocrinol Metab 1988; 67: 951–57.
- Opie EL. The relation of diabetes mellitus to lesions of the pancreas: hyaline degeneration of the islets of Langerhans. J Exp Med 1901; 5: 527–40.
- 22. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β -cell defi cit and increased β -cell apoptosis in humans with type 2 diabetes. *Diabetes* 2003; 52: 102–10.
- **23.** Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic β-cell mass in European subjects with type 2 diabetes. *Diabetes Obes Metab* 2008; 10 (suppl 4): 32–42.
- 24. Jurgens CA, Toukatly MN, Fligner CL, et al. β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 2011; 178: 2632–40.
- **25.** Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and β-cell dysfunction. *Endocr Rev* 2008; 29: 351–66.
- **26.** Perl S, Kushner JA, Buchholz BA, et al. Signifi cant human β-cell turnover is limited to the fi rst three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. *J Clin Endocrinol Metab* 2010; 95: E234–39.
- **27.** Stagner JI, Samols E. The vascular order of islet cellular perfusion in the human pancreas. *Diabetes* 1992; 41: 93–97.
- Gromada J, Franklin I, Wollheim CB. α-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007: 28: 84–116.
- 29. Dunning BE, Gerich JE. The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. *Endocr Rev* 2007; 28: 253–83.

- **30.** Drucker DJ. The biology of incretin hormones. *Cell Metab* 2006; 3: 153–65.
- **31.** Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? *Diabetologia* 2011; 54: 10–18.
- 32. Quddusi S, Vahl TP, Hanson K, Prigeon RL, D'Alessio DA. Differential eff ects of acute and extended infusions of glucagon-like peptide-1 on fi rst- and second-phase insulin secretion in diabetic and nondiabetic humans. *Diabetes Care* 2003; 26: 791–98.
- Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fi broblast growth factors 15/19 and 21: from feast to famine. Genes Dev 2012; 26: 312–24.
- Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5: a valuable metabolic target. *Dig Dis* 2011; 29: 37–44.
- Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 2011; 12: 272–81.
- Kootte RS, Vrieze A, Holleman F, et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. *Diabetes Obes Metab* 2012; 14: 112–20.
- Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. *Gastroenterology* 2012; 143: 913–16 e7.
- **38.** Porte D Jr. Sympathetic regulation of insulin secretion: its relation to diabetes mellitus. *Arch Intern Med* 1969; 123: 252–60.
- **39.** Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. *Diabetologia* 2000; 43: 533–49.
- Miller RE. Pancreatic neuroendocrinology: peripheral neural mechanisms in the regulation of the Islets of Langerhans. *Endocr Rev* 1981; 2: 471–94.
- 41. Berthoud HR, Jeanrenaud B. Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. *Endocrinology* 1979; 105: 146– 51.
- **42.** Bass J, Takahashi JS. Circadian integration of metabolism and energetics. *Science* 2010; 330: 1349–54.
- 43. Hanlon EC, Van Cauter E. Quantification of sleep behavior and of its impact on the cross-talk between the brain and peripheral metabolism. Proc Natl Acad Sci USA 2011; 108 (suppl 3): 15609–16.
- **44.** Barbarroja N, Lopez-Pedrera C, Garrido-Sanchez L, et al. Progression from high insulin resistance to type 2 diabetes does not entail additional visceral adipose tissue infl ammation. *PLoS One* 2012; 7: e48155.
- **45.** Haffner S, Temprosa M, Crandall J, et al, and the Diabetes Prevention Program Research Group. Intensive lifestyle

- intervention or metformin on infl ammation and coagulation in participants with impaired glucose tolerance. *Diabetes* 2005; 54: 1566–72.
- **46.** Donath MY, Storling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. *J Mol Med (Berl)* 2003; 81: 455–70.
- **47.** Herder C, Brunner EJ, Rathmann W, et al. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. *Diabetes Care* 2009; 32: 421–23.
- 48. Luotola K, Pietila A, Zeller T, et al, and the Health 2000 and FINRISK97 Studies. Associations between interleukin-1 (IL-1) gene variations or IL-1 receptor antagonist levels and the development of type 2 diabetes. J Intern Med 2011; 269: 322–32.
- **49.** V.W.W. Tsai, S. Lin, D.A. Brown, A. Salis, and S.N. Breit, "Anorexiacachexia and obesity treatment may be two sides of the same coin: role of the TGF-β superfamily cytokine MIC-1/GDF15," *International Journal of Obesity*, vol. 40, no. 2, pp. 193-197, 2016.
- 50. L. Macia, V.W.W. Tsai, A.D. Nguyen et al., "Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal and obesogenic diets," PLoS One, vol. 7, no. 4, article e34868, 2012.
- Zhou, R.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J. Thioredoxininteracting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010, 11, 136–140.
- 52. Reynolds, C.M.; McGillicuddy, F.C.; Harford, K.A.; Finucane, O.M.; Mills, K.H.; Roche, H.M. Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Mol. Nutr. Food Res. 2012, 56, 1212–1222.
- **53.** Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. *Diabetes* 56, 2356–2370 (2007).
- **54.** Kamata, K. et al. Islet amyloid with macrophage migration correlates with augmented beta- cell deficits in type 2 diabetic patients. *Amyloid* 21, 191–201 (2014)
- **55.** Zhao, H. L. et al. Prevalence and clinicopathological characteristics of islet amyloid in Chinese patients with type 2 diabetes. *Diabetes* 52, 2759–2766 (2003).
- 56. Richardson, S. J., Willcox, A., Bone, A. J., Foulis, A. K. & Morgan, N. G. Islet- associated macrophages in type 2 diabetes. *Diabetologia* 52, 1686–1688 (2009).
- Marselli, L. et al. Beta- cell inflammation in human type 2 diabetes and the role of autophagy. *Diabetes Obes. Metab.* 15, 130–136 (2013).
- 58. Butcher, M. J. et al. Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. *Diabetologia* 57, 491–501 (2014).