| | Print ISSN: 2589-7837 || Online ISSN: 2581-3935 | |

International Journal of Medical Science and Diagnosis Research (IJMSDR)
Available Online at www.ijmsdr.com

NLM (National Library of Medicine ID: 101738824)

Volume 4, Issue 7; July: 2020; Page No. 10-13

Original Research Article

ADVANCES IN THE UNDERSTANDING OF PATHOPHYSIOLOGY OF TYPE 2 DIABETES MELLITUS

Ritwik Ghoshl, Saikat Das’

MBBS Student, Calcutta National Medical College
Conflicts of Interest: Nil

Corresponding author: Ritwik Ghosh

Abstract:

Type 2 Diabetes Mellitus (T2DM) is a major healthcare concern due its complications like heart disease, cerebro-vascular
accidents, etc. It produces a major strain on the healthcare setting as no complete cure is currently available for the
disease. This lack of a permanent cure is mainly attributed to the complex pathophysiology of the disease. Multiple factors
contribute in the pathogenesis of the disease. Many of such factors have been identified in the recent years. These factors
include B cell dysfunction, inflammatory cytokines, NLRP3 inflammosomes, etc.
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Introduction

Among the various metabolic diseases, diabetes is an
important concern for healthcare professionals all over the
world. This is mostly attributed to the higher risk of severe
complications like heart disease, cerebro-vascular
accidents and renal failure. Type 2 Diabetes Mellitus
(T2DM) is also the most common metabolic disease. It is
mainly due to defective insulin secretion. Lifestyle factors
like age, pregnancy, obesity, etc. have a strong influence
on the pathogenesis of such defective insulin secretion
[1,2]. In 2017, the number of diabetic patients between 18
and 99 years of age was approximately 451 million. And by
2045, it is expected to reach 693 million. The mortality in
case of diabetes in the age group of 20 to 99 is about 20
million [3].

Previously, using insulin radioimmunassay, it was found
out that insulin was secreted in response to nutrient
ingestion in case of early maturity onset diabetes patients
[4]. Also, the islet B cells of these patients were found to
be defective. They failed to mount adequate response
towards intravenous secretagogues [5]. Insulin insensitivity
was also found among these patients [6]. This led to
increased gluconeogenesis in liver along with decrease in
the uptake of glucose in muscle and adipose tissue [7].

Type 1 Diabetes Mellitus is mostly treated by insulin
therapy throughout the life of the patient [8]. But in case
of T2DM, no such long lasting treatment is available due to
the complex pathophysiology of the disease, most of which
is still unknown to the healthcare professionals. In this
review, we have tried to include all the new advances in
understanding this complex pathophysiology.

Methods

Here we have systematically reviewed the different articles
published from 1936 to 2020 for this purpose from
different databases of PubMed, Cochrane Library, etc.
Keywords related to the study aim and included in the

search string were: drowning, diagnostic tests, biomarkers,
forensic diagnosis. The aim of this article is to highlight
newer methods that can be used to diagnose the cause of
death in case of drowning.

Role of B cells in glucose homeostasis

The glucose homeostasis is maintained by a feedback loop.
It regulates the glucose concentration and maintains it
within a narrow range [9]. This interactive signaling
between B cells and insulin-sensitive tissues is the
mainstay of this feedback loop. Glucose, amino acids and
fatty acids are taken up by the insulin sensitive tissues
through the mediation of insulin released as a result of
cell stimulation. These islet cells are signaled by these
insulin sensitive tissues about their need for insulin. The
secretion of insulin from B cells is increased in case of
insulin resistance in order to maintain normal glucose
tolerance [10].

Impaired glucose tolerance indicates the presence of
insulin resistance. In case of impaired glucose tolerance,
the rise of glucose concentration even within the normal
limit is attributed to decreased B cell function [11]. The
evolution of natural history of T2DM from impaired
glucose tolerance is due to progression of the detoriation
of B cell function [12,13]. The differences in the rates of
T2DM in different ethnic groups is attributed to the
heritable nature of B cell function [14,15].

Genetic Factors

PPARG was the first gene identified to be associated with
T2DM [14]. More than 50 gene loci have been found to be
linked to T2DM from genome-wide association studies
[16]. Among these gene loci, most of the loci are
associated with B cell function. The rest of the loci are
linked with insulin resistance and obesity [17]. The risk of
development of T2DM in an offspring is increased by
certain genetic expressions which are influenced by the in-
utero environment [18].
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Environmental Factors

The development of obesity, B cell dysfunction, insulin
resistance and glucose intolerance have been attributed to
increased intake of dietary fats, specially saturated fats
[19]. The response of B cells to carbohydrate gets reduced
gradually with the progression of age. This results in the
decrease of glucose tolerance with ageing [20].

Reduction of B cells

The number of B cells gets reduced in T2DM [21-24].
Multiple factors are responsible for this reduction of B
cells. These factors include glucolipotoxicity [25] and
deposition of amyloid which cause B cell apoptosis through
oxidative and endoplasmic-reticulum stress [24]. Since the
human pancreas is not able to produce B cells after 30
years of age, this loss is not replaced by new B cells [26].

a cell dysfunction

In the pancreatic islets, blood flows from B cells to the a
cells [27]. It has been found that high concentrations of
insulin in the blood flowing to a cells can suppress the
release of glucagon [28].

The failure to suppress glucagon release after ingestion of
food leads to hyperglycemia. This failure is indicated by
increased concentration of fasting glucagon and is
attributed to a cell dysfunction [29].

Role of intestine

In the gastro-intestinal tract, Glucagon like peptide 1 (GLP-
1) and glucose dependent insulinotropic polypeptide (GIP)
act on pancreatic islets. Among them, GLP-1 acts on B cells
to increase insulin secretion and on a cells to decrease
glucagon secretion [30]. There is no difference in GLP-1
concentration between a healthy person and a person
having T2DM [31]. Thus, the B cell response to GLP-1 is
decreased in case of T2DM. This decreased response has
been observed through intravenous administration of GLP-
1 under controlled conditions [32].

Another important regulator of glucose metabolism in the
gastro-intestinal tract is bile acids. They initiate the release
of fibroblast growth factor (FGF) 19 by activating farnesoid
X receptor [33]. FGF 19 has insulin-like effects. GLP-1
secretion is also mediated by bile acids through the
activation of G-protein-coupled bile-acid receptor 1 located
on intestinal L cells [34].

The intestinal microbiome is another important factor in
the evolution of T2DM [35]. But which bacterial species are
associated with T2DM is not clear [36]. Proof of concept
study has shown that infusion of intestinal microbiota from
lean individuals can improve insulin sensitivity in patients
with T2DM [37].

Role of nervous system

Glucose metabolism is controlled by parasympathetic and
sympathetic nervous systems. Direct control is through
neuronal input and indirect control is through circulation.
Ultimately, the glucose metabolism is controlled through
regulation of insulin, glucagon secretion and
gluconeogenesis by the nervous system [38,39].

The vagus nerve has been identified to have regulatory
effect on the pancreatic islets as experimental severing of
this nerve has resulted in decreased insulin secretion [40].
In the cranium, the hypothalamus has been identified as an
important regulator of pancreatic islets. This has been
shown by the fact that experimental ablation of
hypothalamus in rats lead to B cell dysregulation and
hyperinsulinaemia [41].

Decreased quality of sleep and changes in diurnal patterns
are responsible for alteration of metabolic processes.
Hence, the clock genes which maintain circadian rhythm
are suspected to play a role in the pathogenesis of T2DM
[42,43].

Islet inflammation

Several systemic inflammatory markers like C-reactive
protein and Interleukin 6 are associated with B cell
function and insulin sensitivity [44,45]. Intraislet immune
response is responsible for B cell dysfunction [46].

Interleukin 1B and interleukin 1 receptor antagonist
concentrations have been found to be increased in case of
T2DM. They play a role in inflammation of islet and B cell
dysfunction [47,48].

Role of Macrophage-inhibiting cytokine-1 (MIC-1)

MIC-1 regulates body weight by acting on the feeding
centers in hypothalamus and brainstem [49]. Insulin
activity increases with increase in MIC-1 expression [50].
Hence, MIC-1 can be considered as an anti-inflammatory
cytokine and may help in the regression of T2DM.

Role of NLRP3 inflammosome

The NLRP3 inflammosome interacts with the TXNIP and
thereby regulates the innate immune system. It is
activated by glucose, saturated fatty acids and uric acid. It
promotes the production of IL-1 and cytokines which lead
to inflammation of pancreatic islets [51,52].

Role of macrophages

T2DM is characterized by macrophage infiltration of the
pancreatic islets. The degree of infiltration is usually
proportional to the degree of B cell dysfunction [53-58].
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Conclusion

T2DM is one of the most prevalent diseases in today’s
world. It is a major healthcare concern due to its severe
complications like stroke, cardiovascular diseases, etc. Due
to its complex pathophysiology, there is no complete cure
for this disease. This complex pathophysiology is mainly
attributed to the disease being multifactorial. Various
studies have shown that the contributory factors to the
pathogenesis of T2DM are B cell dysfunction, intestinal and
brain signals, NLRP3 inflammosomes, genetic and
environmental factors, etc. Further studies need to be
conducted to ascertain a more clear picture of the roles of
various contributory factors in order to properly
understand the pathogenesis of T2DM.
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