|| Print ISSN: 2589-7837 || Online ISSN: 2581-3935 ||

International Journal of Medical Science and Diagnosis Research (IJMSDR)

Available Online at www.ijmsdr.com

NLM (National Library of Medicine ID: 101738824)

Volume 9, Issue 3; 2025; Page No. 37-45

Original Research Article

Pharmacovigilance: Enhancing Medication Safety Through Risk Management and Innovation

Mohd Shakir Hussain^{1*}, Ajit Kumar Mishra², Rishabh Pandey³

¹Assistant Professor, Department of Pharmacology, Autonomous State Medical College, Gonda, 271001, Uttar Pradesh, India

²Senior Resident, Department of Pharmacology, Uttar Pradesh University of Medical Sciences, Saifai, Etawah, 206130, U.P. India

³Senior Resident, Department of Pharmacology, Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Received: 22-03-2025 / Revised: 19-04-2025 / Accepted: 06-05-2025

Conflicts of Interest: Nil

Corresponding author: Dr Mohd Shakir Hussain DOI: https://doi.org/10.32553/ijmsdr.v9i2.1054

Abstract

Pharmacovigilance is a crucial component of healthcare systems, aimed at identifying, assessing, and preventing adverse drug reactions (ADRs) to ensure medication safety and effectiveness. This paper presents a comprehensive overview of pharmacovigilance principles, challenges, and future directions. The escalating volume of ADR data necessitates a robust global network of pharmacovigilance centres overseen by the Uppsala Monitoring Centre to uncover previously unnoticed ADRs. Despite notable advancements, underreporting of ADRs remains a challenge, particularly in developing nations, emphasizing the need for increased awareness and reporting rates among healthcare professionals and consumers. Integrating pharmacovigilance into clinical research and public health initiatives is vital for enhancing drug safety and monitoring. The paper highlights the significance of risk management plans (RMPs) and emerging technologies like artificial intelligence (AI) and machine learning (ML) in advancing pharmacovigilance practices. Future research directions include leveraging digital healthcare data and social media for comprehensive pharmacovigilance and implementing automation tools to streamline adverse event detection and reporting processes. Understanding pharmacovigilance is essential for bolstering medication safety and improving public health outcomes.

KEYWORDS: Pharmacovigilance, adverse drug reactions, medication safety, healthcare systems, AI

1. Introduction

Pharmacovigilance plays a critical role in upholding the effectiveness of clinical practice, public health initiatives, and drug regulatory systems. It encompasses the recording and analysis of adverse drug reactions (ADRs) to promptly identify pharmacological risks and safeguard products from unjustified withdrawal. With the escalating volume of ADR data, there is a pressing need for a robust global network of pharmacovigilance centres

overseen by the Uppsala Monitoring Centre. The primary objective of pharmacovigilance is to uncover previously unnoticed or poorly understood adverse drug reactions. Its integration into clinical research is on the rise, albeit encountering significant challenges in enhancing drug safety and monitoring. Despite the imperative for spontaneous reporting of adverse drug responses, underreporting persists, particularly in developing nations. A

comprehensive grasp of pharmacovigilance is indispensable for amplifying reporting rates and curbing ADRs, thereby laying the groundwork for initiatives aimed at bolstering medication safety¹.

Pharmacovigilance plays a critical role in identifying, assessing, comprehending, and preventing adverse effects and other drugrelated issues. Insufficient reporting of adverse drug reactions, particularly concerning banned drugs available over the counter in India, underscores a significant concern within the healthcare system. The most prevalent categories of medications withdrawn in the past decade encompass nonsteroidal antiinflammatory drugs, antidiabetic drugs, antiobesity drugs, antihistamines, gastroprokinetic drugs, breast cancer medications. and infertility drugs. presence of numerous pharmacovigilance facilities worldwide underscores the global significance of drug safety monitoring. Despite advancements, pharmacovigilance encounters challenges in ensuring elevated safety standards and improved drug monitoring practices. Key topics addressed in the overview encompass drug protections, the roles of international pharmacovigilance facilities, associated benefits, challenges, and future considerations within healthcare systems². Information regarding control categorized with specific risk levels undergoes collection. processing, analysis. documentation. Pharmaceutical manufacturers establish data exchange partnerships with product recipients to evaluate and mitigate potential safety risks associated with product usage. This collaborative effort aims to detect and explore potential safety issues, thereby reasserting social accountability for the safety of drugs in circulation³.

UNDERSTANDING PHARMACOVIGILANCE

Pharmacovigilance involves various activities aimed at detecting, assessing, understanding, and preventing adverse effects or other drugrelated problems. Initially funded by the World Pharmacovigilance Bank. National Programme (NPVP) in India was renamed the Pharmacovigilance Programme of India (PvPI) in 2009. India's progress in science and technology, particularly in clinical trials and new drug development, poses challenges in monitoring safety concerns associated with new drugs. Factors such as polypharmacy, over-the-counter (OTC) drug use, and changes in physicians complicate the identification of adverse drug reactions (ADRs). Despite the growing importance of the national pharmacovigilance programme, some healthcare professionals may not fully grasp its significance. Therefore, sensitizing healthcare professionals through various means and faculty development programmes is crucial to support and strengthen national the pharmacovigilance programme⁴. Implementation of electronic reporting (ereporting) systems crucial is pharmacovigilance, along with making ADR reporting mandatory for healthcare practitioners comprehensive to ensure reporting. Cultivating a reporting culture among healthcare professionals is essential for effective pharmacovigilance. However, challenges hindering pharmacovigilance implementation in India include inadequate financing organization and pharmacovigilance systems, as well as poor data quality and handling at zonal centres, contributing to the lack of understanding of incidence. Moreover, healthcare ADR professionals' involvement, expertise, and enthusiasm for pharmacovigilance in India are minimal, particularly in rural areas. Although consumer organizations encourage patients to report ADRs, there is no direct mechanism for consumers to report to regulatory authorities⁵. Medicinal products must demonstrate a favourable benefit-risk balance to remain on the market. Benefit-risk assessments are conducted continuously throughout lifecycle of a medicinal product, yet regulatory

guidance on their specific content and structure is limited. This paper aims to offer an overview pharmacovigilance of principles contribute to structured benefit-risk assessments, with a particular focus on qualitative analysis⁶. Pharmacovigilance is crucial for safeguarding public health by identifying, evaluating, and minimizing health issues related to medications to ensure that the benefits outweigh the risks. The retraction of medications from global markets underscores the significance of pharmacovigilance, raising concerns regarding system enhancements and the need for uniform international guidelines side effects. detailing Medication guidelines are essential for ensuring the safety, viability, and accuracy of pharmaceuticals and medication information accessible to the public. These guidelines encompass a range of functions, including authorization, review of manufacturing facilities and distribution channels, evaluation of adverse drug reactions (ADR), regulation of medication advancement and advertising, and management of clinical medication trials⁷.

PHARMACOVIGILANCE SYSTEM COMPONENTS

Pharmacovigilance is a field that addresses adverse event reporting stemming from medical devices and drugs, with the goal of monitoring, assessing, and mitigating these occurrences. India's pharmacovigilance system falls under the regulation of the CDSCO, while the US system is overseen by the US FDA. countries have implemented Both pharmacovigilance programs to oversee and manage adverse drug reactions. Additionally, the WHO, in partnership with the UMC, has developed an International Monitoring System dedicated pharmacovigilance⁸. to Pharmacovigilance plays a critical role in ensuring the effectiveness of clinical practice, public health endeavours, and drug regulatory systems by recording and analyzing adverse drug reactions (ADRs) to promptly identify pharmacological risks and prevent unjustified

product withdrawals. With the rising reporting of ADRs, pharmacovigilance faces increasing volume of data, necessitating adept handling and analysis. Enhancing the global pharmacovigilance network of overseen by the Uppsala Monitoring Centre through an independent review process could address contentious pharmaceutical safety issues. Its primary goal is to identify previously unrecognized or poorly understood adverse drug reactions, with its significance expanding in global clinical research. Despite its importance, significant obstacles hinder the improvement of drug safety and monitoring pharmacovigilance. through spontaneous reporting of adverse drug responses is crucial for promoting correct and safe drug use, underreporting remains a significant challenge, especially in developing nations. Understanding pharmacovigilance serves as the cornerstone for initiatives aimed at increasing reporting rates and reducing ADR occurrences9.

Pharmacovigilance plays a crucial role in monitoring drug safety and identifying adverse drug events after drugs enter the market. However, underreporting of adverse reactions presents a significant challenge to these systems. In India, several obstacles hinder the spontaneous reporting of adverse reactions (ADRs), including insufficient knowledge and awareness among healthcare professionals, clinician perceptions towards reporting, challenges in establishing reporting systems in hospitals, and inadequate training to recognize ADRs. To address these issues, solutions involve increased participation of nurses, pharmacists, and consumers reporting ADRs, streamlining and expediting the reporting process through electronic methods, implementing educational interventions and training programs for healthcare providers, and raising awareness about the reporting system among caregivers and recipients. Achieving a robust reporting process in pharmacovigilance necessitates

careful planning, practical solutions, and dedicated efforts to uphold patient safety as the ultimate goal¹⁰.

ADVERSE DRUG REACTION REPORTING

This offers a comprehensive overview of interventions aimed at encouraging the spontaneous reporting of suspected adverse drug reactions (ADRs) by healthcare professionals (HCPs) and/or patients/carers. It delves into the challenge of under-reporting within voluntary reporting systems for ADRs, a crucial aspect of drug safety surveillance. Various factors, including personal and professional traits, knowledge, and attitudes, play a significant role in influencing ADR reporting among healthcare professionals. Notably, medical specialty emerges as a key associated with under-reporting, factor particularly among physicians. The review underscores the strong correlation between the knowledge and attitudes of healthcare professionals and their reporting behaviour, emphasizing the need to address modifiable factors to enhance reporting rates. Overall, it highlights the potential implications for public health if interventions targeting knowledge and attitudes are implemented to improve ADR reporting practices¹¹.

The study evaluates spontaneous reports (SR) of adverse drug reactions (ADRs) and their correlation with patient characteristics and drugs, focusing on analyzing data from the Rostov Region. It aims to assess the relationship between SR characteristics and patients' factors such as gender and age, providing insights into pharmacovigilance practices and their implications for patient safety. Overall, the research contributes to understanding the pharmacovigilance system and its role in monitoring drug safety¹². Postmarketing safety monitoring of medicines through pharmacovigilance (PV) is crucial beyond controlled clinical trials, as real-life usage can vary, necessitating continuous safety

monitoring. The recent pandemic has highlighted PV's pivotal role in monitoring the safety of medicines and vaccines during public health emergencies. Accelerated approvals, like those for repurposed medicines for COVID-19, underscore PV's vital support in regulatory decision-making to ensure patient safety¹³.

SIGNAL DETECTION AND MANAGEMENT

Signal Detection Theory (SDT) originated in the 1950s in the field of psychology to explain decision-making processes in the presence of uncertainty. SDT has been widely used in fields various such as psychology, neuroscience, economics, and engineering to quantify signal detectability and response bias. SDT provides a mathematical framework to analyze how individuals make decisions based on uncertain information, quantifying the ability to detect signals and the tendency to respond a certain way. Researchers must grasp mathematical underpinnings theoretical advancements of SDT to effectively apply the theory in their studies and research endeavours. The paper reviews recent theoretical developments in SDT, highlighting the ongoing evolution of the theory and its relevance in contemporary research settings¹⁴.

Traditional bulky instrumentation for signal detection has evolved towards miniaturization, enabling wearable devices for on-the-go analysis. Two main detection principles are utilized: electrical/electrochemical and optical, each with specific advantages and applications. Electrochemical methods are favoured for miniaturized devices due to their ease of miniaturization, cost-effectiveness, suitability for interfacial measurements. Optical detection methods, including colorimetry, fluorescence, and photoplethysmography, offer unique advantages like naked-eye detection and compatibility with small components. Wearable devices for signal detection are often integrated with mobile platforms, particularly smartphones, enhancing their functionality and accessibility¹⁵. The paper discusses the challenges in older adult health assessment, focusing on multidimensional outcomes like functioning and frailty. It highlights three key developments in gerontologic biostatistics (GBS) over the past decade: Increased use of modelling for internal validation quantifying systematic heterogeneity assessing older adult health. The proliferation of signal-intensive behavioural phenotypes such as accelerometry, sleep actigraphy, and ecological momentary assessment, with a focus on functional data analysis. Emphasis on "deep" characterization through single- or multi-omics studies and multi-modal phenotyping for cognition research, discussing techniques for replicable implementation. The identifies potential pitfalls paper and implications for the development of gerontologic data science, emphasizing the importance of addressing these challenges in the field of gerontology¹⁶.

RISK MANAGEMENT AND RISK MINIMIZATION STRATEGIES

Risk management is a crucial aspect of project management, ensuring project success by identifying, evaluating, responding to, and monitoring risks. The risk management plan plays a central role in maintaining continuity and uniformity in risk management activities, guiding the project team to deliver the project budget. time and Effective identification involves establishing mutual agreement on project fundamentals early in the planning process, before advancing to risk analysis and response planning. Risk analysis entails evaluating and prioritizing identified risks to determine the best response strategies for each risk¹⁷. The authors define risk and its classifications, emphasizing its importance in decision theory across various fields like economics, finance, and actuarial science. They introduce the Lee diagram to illustrate concepts like expected loss, limited loss, and excess loss, providing a visual representation of risk measures. Risk is categorized based on diversifiability, systematics, and probability/uncertainty, highlighting the multifaceted nature of risk assessment. Quantitative decision theory heavily relies on numerical risk measures to quantify risk preferences and aid in decision-making processes. The paper discusses the applications of risk measures in pricing strategies and capital management, showcasing their practical relevance in financial decisionmaking¹⁸. The pharmacovigilance system is crucial for ensuring the safety and efficacy of medicine use, highlighting the importance of risk management plans (RMPs) in this process. The study focuses on analyzing the compliance of RMPs with the requirements of the Eurasian Economic Union (EAEU) and identifying challenges faced during their preparation. The research identifies common mistakes in RMPs, such as inadequate information on medicine summaries, safety specifications, risks in the pharmacovigilance plan, and risk minimization measures, emphasizing the need improvement in these areas. It is noted that RMPs often lack essential details like the epidemiology of indications for target populations, major risks mentioned in patient information leaflets, and assessment of safety risk minimization actions, indicating areas for enhancement in RMP preparation. The study concludes that proper preparation of RMPs aligned with EAEU Good Pharmacovigilance Practice requires additional professional for pharmacovigilance training officers, underlining the importance of ongoing education in this field¹⁹.

EMERGING TRENDS AND FUTURE DIRECTIONS

The paper discusses the use of artificial intelligence (AI) and intelligent automation (IA) tools in pharmacovigilance (PV) activities, emphasizing the need to tailor their contribution to preserve medical and pharmacological expertise in drug safety. It

highlights the increasing importance of AI and IA tools in managing spontaneous reporting cases and signal detection in PV, aiming to handle the growing number of cases and regulatory tasks efficiently. The paper mentions that AI and IA tools can assist in various PV activities in both public and private systems, particularly in tasks with low added value like quality checks and regulatory information verification. It points out that the main challenges for modern PV systems lie in testing, validating, and integrating these tools into routine practices to ensure high-quality standards in case management and signal detection²⁰. Social media is considered a valuable resource for gathering real-world data on adverse drug events. There is ongoing research to determine the significance of social media in pharmacovigilance and its potential as a complementary data source to traditional methods. The primary objective is to assess and characterize the utilization of social media in detecting adverse drug events pharmacovigilance in comparison to other data outlets. The study will involve searching multiple databases, including Google Scholar, and employing hand-searching techniques to identify relevant literature. Inclusion criteria involve studies that utilize social media to identify adverse drug reactions and compare the outcomes with other data sources. The review will provide descriptive statistics on the types of adverse drug events identified through social media and compare them with conventional data sources. The aim is to determine the added value of social media in monitoring medication adverse events through comparative analysis²¹.

Pharmacovigilance is defined as the science and activities related to detecting, assessing, understanding, and preventing adverse effects from medicines or vaccines. The field of pharmacovigilance originated to enhance drug safety for individual patients and consumers but has evolved to meet regulatory demands, sometimes losing focus on the patient. The

advent of digital healthcare data presents an opportunity to merge industrial and personal aspects of pharmacovigilance for more comprehensive monitoring and faster responses. Informatics plays a crucial role in advancing pharmacovigilance by defining adverse event concepts, developing detection and reporting standards, and creating predictive methods using technologies like artificial intelligence and machine learning. Future research in pharmacovigilance should focus on establishing ontological definitions for adverse events, enhancing detection and implementing reporting systems, and predictive analytics for different populations²². Automation in pharmacovigilance is a transformative approach that leverages technology to enhance patient safety and streamline drug safety processes. Technology advancements like artificial intelligence (AI) and machine learning (ML) are increasingly being integrated into pharmacovigilance strategies to improve efficiency and accuracy in adverse drug reaction (ADR) detection and reporting. The use of AI and ML in pharmacovigilance is aimed at addressing challenges such as the availability of appropriate training data for machine learning models and the need for standardized regulatory guidance. AI and ML technologies offer the capability to analyze and interpret vast amounts of data rapidly, operate continuously without fatigue, and significantly reduce manual effort in processing adverse effects reported through Individual Case Safety Reports (ICSRs). The adoption of automation tools like AI and ML in pharmacovigilance is crucial for pharmaceutical companies to effectively manage the safety of their products and improve overall data quality for signal detection and benefit-risk assessments²³.

CONCLUSION

Pharmacovigilance emerges as a critical pillar in contemporary healthcare systems, contributing profoundly to drug safety and patient well-being. The comprehensive scope

pharmacovigilance encompasses multifaceted approach involving the detection, assessment, understanding, and prevention of adverse drug reactions (ADRs), thereby upholding the efficacy and integrity of clinical practice and drug regulatory frameworks. The escalating volume of adverse drug reaction (ADR) data underscores the pressing need for a robust global network of pharmacovigilance centres overseen by entities like the Uppsala Monitoring Centre. This network facilitates prompt identification of pharmacological risks, ensuring timely interventions to safeguard health public and prevent unjustified withdrawal of medications. Integration of pharmacovigilance into clinical research continues to expand, albeit encountering significant challenges, particularly enhancing drug safety and monitoring.

Despite the imperative for spontaneous reporting of adverse drug responses, persistent underreporting remains a challenge, especially in developing nations. Overcoming this hurdle requires a concerted effort to amplify reporting rates through awareness campaigns, streamlined educational initiatives, and reporting mechanisms. Sensitizing healthcare professionals, consumers, and stakeholders about the pivotal role of pharmacovigilance is paramount for bolstering medication safety and culture reporting. fostering of Pharmacovigilance is not only about identifying and addressing adverse drug reactions but also about promoting a proactive approach towards drug safety, management, and continuous improvement in healthcare practices. With emerging trends like artificial intelligence (AI) and intelligent (IA) poised automation to transform pharmacovigilance, there is a compelling need to harness technological advancements to optimize case management, signal detection, and regulatory compliance. In essence, a robust pharmacovigilance system forms cornerstone of a patient-centric healthcare ecosystem, ensuring that medicinal products

maintain a favourable benefit-risk balance throughout their lifecycle. By fostering collaboration among stakeholders, enhancing reporting mechanisms, and leveraging technological innovations, pharmacovigilance will continue to evolve, safeguarding public health and optimizing medication safety in an increasingly complex healthcare landscape.

ACKNOWLEDGEMENTS

The authors are thankful to Dr Mohd Arif, Dr Akash Patel, and Dr Arjun Dev for providing continuous support during the review process.

REFERENCES

- Praveen, V., Patil., Sanjay, K., Bais., Swapnil, B., Chandanshive. (2023). Review on Concept of Pharmacovigilance. International Journal of Advanced Research in Science, Communication, and Technology, 462-468. doi: 10.48175/ijarsct-7999.
- 2. Adesh, B, Wagh., Vaishnavi, K, Bochare., Archana, B, Belhekar., Gadge, Shubham, C. (2022). An Overview of Pharmacovigilance: A Key for Drug Safety and Monitoring. International Journal of Advanced Research in Science, Communication and Technology, 179-183. doi: 10.48175/ijarsct-5003.
- 3. Igor, Valerievich, Korobkin. Pharmacovigilance is a key component of drug regulatory systems. (2022).49-53. doi: 10.33920/med-13-2206-02.
- 4. Shruti, Brahmbhatt., Mahavir Singh, H., Rajput. Pharmacovigilance: Significance and challenges. International Journal of Health Sciences (IJHS), (2022).5860-5863. doi: 10.53730/ijhs.v6ns5.11201.
- Praveen, V., Patil., Sanjay, K., Bais., Swapnil, B., Chandanshive. Review on Concept of Pharmacovigilance. International Journal of Advanced Research in Science, Communication and Technology, (2023).462-468. doi: 10.48175/ijarsct-7999.

- 6. Rosa, Piccirillo., Jennifer, Bishop, Parish. Pharmacovigilance Principles: The Building Blocks of Benefit-Risk Assessments. Global clinical and translational research, (2022).1-7. doi: 10.36316/gcatr.04.0045.
- 7. Mohammed, Khalid, Abbood., Hasan, Alaa, Aldeen, Khalaf., Ehab, H., Abudlqader., Hassanien, Sagban, Taghi., Ahmed, Alaa, Al-Temimi. Scope of Pharmacovigilance: Comprehensive Review. Chemical science international journal, (2022).29-39. doi: 10.9734/csji/2022/v31i5822.
- 8. Koushik, Yetukuri., Ramarao, Nadendla. Comparitive Study of Pharmacovigilance System in India and USA. Journal of complementary medicine research, (2023).;14(2):129-129. doi: 10.5455/jcmr.2023.14.02.20.
- 9. Praveen, V., Patil., Sanjay, K., Bais., Swapnil, B., Chandanshive. Review on Concept of Pharmacovigilance. International Journal of Advanced Research in Science, Communication and Technology, (2023).462-468. doi: 10.48175/ijarsct-7999.
- 10. Ms., Bhore, Shruti., Ms., Saniya, Pathan., Ms., Gadge, Rutuja., Mr., Tambe, Sagar. A Review on Adverse Drug Reaction in Pharmacovigilance. International Journal of Advanced Research in Science, Communication and Technology, (2022).472-475. doi: 10.48175/ijarsct-4841.
- 11. Philip, A., Routledge., Robert, Bracchi. Improving the spontaneous reporting of suspected adverse drug reactions: An overview of systematic reviews. British Journal of Clinical Pharmacology, (2023).;89:2377-2385. doi: 10.1111/bcp.15791.
- 12. T., S., Litvinenko. Evaluation of spontaneous reports in the pharmacovigilance system. Glavvrač

- (Chief Medical Officer), (2022).9-10. doi: 10.33920/med-03-2208-01.
- 13. Mira, Desai. Pharmacovigilance and spontaneous adverse drug reaction reporting: Challenges and opportunities. Perspectives in Clinical Research, (2022).;13(4):177-179. doi: 10.4103/picr.picr 169 22.
- 14. Basic Methods and Theoretical Development of Signal Detection Theory. (2022).;49(1):63-82. doi: 10.2333/jbhmk.49.63.
- 15. Signal detection techniques. (2022). doi: 10.1016/b978-0-12-821661-3.00008-2.
- 16. Karen, Bandeen-Roche. Signal detection and validation in an era of big gerontological data. Innovation in Aging, (2022).;6(Supplement_1):178-178. doi: 10.1093/geroni/igac059.712.
- 17. Managing Risk. (2023).99-118. doi: 10.1002/9781394185504.ch6.
- 18. Risk and Risk Measures. (2022).27-61. doi: 10.1002/9781119756538.ch3.
- 19. T., M., Bukatina., E.V., Shubnikova. Critical Overview of the Contents of Risk Management Plans for Medicines. (2022).;10(1):6-12. doi: 10.30895/2312-7821-2022-10-1-6-12.
- 20. Francesco, Salvo., Joëlle, Micallef., A., Lahouegue., Laurent, Chouchana., Louis, Letinier., Jean-Luc, Faillie., Antoine, Pariente. Will the future of pharmacovigilance be more automated? Expert Opinion on Drug Safety, (2023).1-8. doi: 10.1080/14740338.2023.2227091.
- 21. The Role of Social Media for Identifying Adverse Drug Events Data in Pharmacovigilance: Protocol for a Scoping Review (Preprint). (2023). doi: 10.2196/preprints.47068.
- 22. KHASANOVA, Dilyafruz, Abdukhamidovna. Back to the Future: The Evolution of Pharmacovigilance in the Age of Digital Healthcare. Computers in health care, (2023).455-471. doi: 10.1007/978-3-031-27173-1 22.

23. C., V.., D., P., Susmita, A., Sushmitha, P., Ramya, Ch., Chandini, K. Automation in pharmacovigilance: artificial intelligence and machine learning for patient safety.

Journal of innovations in applied pharmaceutical sciences, (2022). doi: 10.37022/jiaps.v7i3.374.